
BCY70 BCY71/BCY72

GENERAL PURPOSE APPLICATIONS

DESCRIPTION

The BCY70, BCY71 and BCY72 are silicon planar epitaxial PNP transistors in Jedec TO-18 metal case.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Unit		
	Falameter	BCY70	BCY71	BCY72	Onit
V _{CBO}	Collector-base Voltage $(I_E = 0)$		- 45	- 25	V
V _{CEO}	Collector-emitter Voltage $(I_B = 0)$	- 40	- 45	- 25	V
V _{EBO}	Emitter-base Voltage ($I_c = 0$)	- 5		V	
I _{CM}	Collector Peak Current	- 200		mA	
Ptot	Total Power Dissipation at $T_{amb} \le 25 \ ^\circ C$	350		mW	
T_{stg}, T_j	Storage and Junction Temperature	– 65 to 200			°C

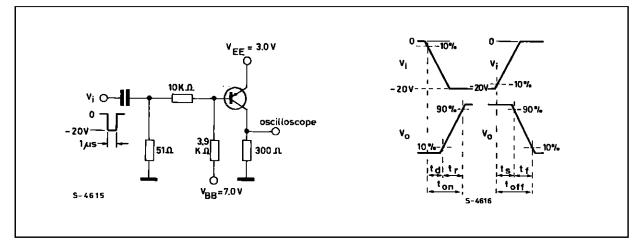
THERMAL DATA

R _{th j-case}	Thermal Resistance Junction-case	Мах	150	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	500	°C/W

ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector Cutoff Current (V _{BE} = 0)	For BCY70 $V_{CE} = -20 V$ $V_{CE} = -50 V$ For BCY71 $V_{CB} = -20 V$ $V_{CB} = -45 V$ For BCY72 $V_{CB} = -20 V$ $V_{CB} = -25 V$			- 10 - 500 - 100 - 10 - 100 - 10	nA nA μA nA μA
I _{EBO}	Emitter cutoff Current (I _C = 0)	$V_{EB} = -5 V$			- 10	μΑ
$V_{CE(sat)}^{*}$	Collector-emitter Saturation Voltage	$I_{C} = -10 \text{ mA}$ $I_{B} = -1 \text{ mA}$ $I_{C} = -50 \text{ mA}$ $I_{B} = -5 \text{ mA}$			- 0.25 - 0.5	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$ \begin{array}{ll} I_{C}=&-10 \text{ mA} & I_{B}=&-1 \text{ mA} \\ \text{For } \textbf{BCY70} & \text{and } \textbf{BCY71} \text{ Only} \\ I_{C}=&-50 \text{ mA} & I_{B}=&-5 \text{ mA} \end{array} $	- 0.6		- 0.9 - 1.2	> >
hfe*	DC Current Gain	$ \begin{array}{l} \mbox{For BCY70} \\ I_{C} = - \ 0.1 \ mA & V_{CE} = - \ 1 \ V \\ I_{C} = - \ 1 \ mA & V_{CE} = - \ 1 \ V \\ I_{C} = - \ 10 \ mA & V_{CE} = - \ 1 \ V \\ I_{C} = - \ 50 \ mA & V_{CE} = - \ 1 \ V \\ \hline \ For \ BCY71 & \\ I_{C} = - \ 0.1 \ mA & V_{CE} = - \ 1 \ V \\ I_{C} = - \ 1 \ mA & V_{CE} = - \ 1 \ V \\ I_{C} = - \ 1 \ mA & V_{CE} = - \ 1 \ V \\ \hline \ I_{C} = - \ 1 \ mA & V_{CE} = - \ 1 \ V \\ \hline \ I_{C} = - \ 10 \ mA & V_{CE} = - \ 1 \ V \\ \hline \ I_{C} = - \ 50 \ mA & V_{CE} = - \ 1 \ V \\ \hline \ I_{C} = - \ 50 \ mA & V_{CE} = - \ 1 \ V \\ \hline \ I_{C} = - \ 10 \ mA & V_{CE} = - \ 1 \ V \\ \hline \ \ For \ BCY72 & \\ \hline \ I_{C} = - \ 1 \ mA & V_{CE} = - \ 1 \ V \\ \hline \ \ I_{C} = - \ 1 \ mA & V_{CE} = - \ 1 \ V \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	40 45 50 15 80 90 100 15 40 50	60	600	
h _{fe}	Small Signal Current Gain (for BCY71 only)	$I_{C} = -1 \text{ mA}$ $V_{CE} = -10 \text{ V}$ f = 1 kHz	100		400	
f _T	Transition Frequency	$ \begin{array}{c} I_{C} = - \ 0.1 \ \text{mA} & V_{CE} = - \ 20 \ \text{V} \\ f = 10.7 \ \text{MHz} & For \ \textbf{BCY71} \\ I_{C} = - \ 10 \ \text{mA} & V_{CE} = - \ 20 \ \text{V} \\ f = 100 \ \text{MHz} & For \ \textbf{BCY70} \\ For \ \textbf{BCY70} & and \ \textbf{BCY72} \end{array} $	15 250 200			MHz MHz MHz
C _{EBO}	Emitter-base Capacitance	$I_{C} = 0$ $V_{EB} = -1 V$ f = 1 MHz			8	pF
Ссво	Collector-base Capacitance	I _E = 0 V _{CB} = - 10 V f = 1 MHz			6	pF

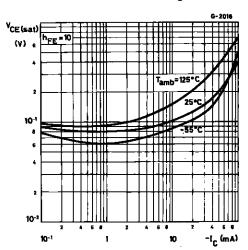
* Pulsed : pulse duration = 300 μ s, duty cycle = 1 %.

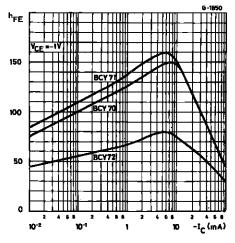

Symbol	Parameter	eter Test Conditions		Тур.	Max.	Unit
NF	Noise Figure	$ I_{C} = - 0.1 \text{ mA} \qquad V_{CE} = -5 \text{ V} \\ R_{g} = 2 k\Omega \\ f = 10 \text{ to } 10 000 \text{ Hz} $				
		For BCY70 and BCY72 for BCY71			6 2	dB dB
h _{le}	Input Impedance (for BCY71 only)	$I_{C} = -1 \text{ mA}$ $V_{CE} = -10 \text{ V}$ f = 1 kHz	2		12	kΩ
h _{re}	Reverse Voltage Ratio (for BCY71 only)	$ I_{C} = -1 \text{ mA} \qquad V_{CE} = -10 \text{ V} $ $ f = 1 \text{kHz} $			20x10 ⁻⁴	
h _{oe}	Output Admittance (for BCY71 only)	$I_{C} = -1 \text{ mA}$ $V_{CE} = -10 \text{ V}$ f = 1 kHz	10		60	μS
t _d	Delay Time (for BCY70 and BCY72 only)	$I_{C} = -10 \text{ mA}$ $V_{EE} = 3 \text{ V}$ $I_{B1} = -1 \text{ mA}$		23	35	ns
tr	Rise Time (for BCY70 and BCY72 only)	$I_{C} = -10 \text{ mA}$ $V_{EE} = 3 \text{ V}$ $I_{B1} = -1 \text{ mA}$		25	35	ns
ts	Storage Time (for BCY70 and BCY72 only)	$I_{C} = -10 \text{ mA}$ $V_{EE} = 3 \text{ V}$ $I_{B1} = -I_{B2} = -1 \text{ mA}$		270	350	ns
t _f	Fall Time (for BCY70 and BCY72 only)	$I_{C} = -10 \text{ mA}$ $V_{EE} = 3 \text{ V}$ $I_{B1} = -I_{B2} = -1 \text{ mA}$		50	80	ns
t _{on}	Turn-on Time (for BCY70 and BCY72 only)	$I_{C} = -10 \text{ mA}$ $V_{EE} = 3 \text{ V}$ $I_{B1} = -1 \text{ mA}$		48	65	ns
t _{off}	Turn-off Time (for BCY70 and BCY72 only)	$I_{C} = -10 \text{ mA}$ $V_{EE} = 3 \text{ V}$ $I_{B1} = -I_{B2} = -1 \text{ mA}$		320	420	ns

ELECTRICAL CHARACTERISTICS (continued)

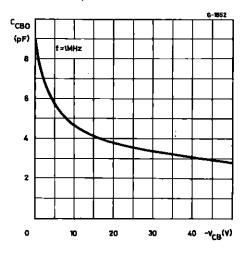
* Pulsed : pulse duration = 300 μ s, duty cycle = 1 %.

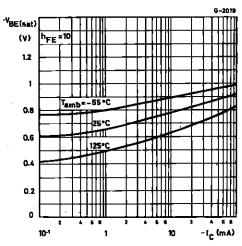
TEST CIRCUIT

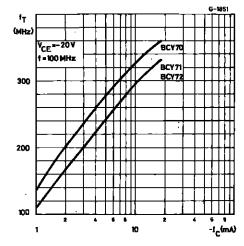

Test Circuit for Switching Times.

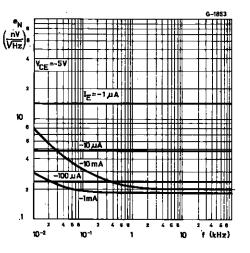


BCY70-BCY71-BCY72

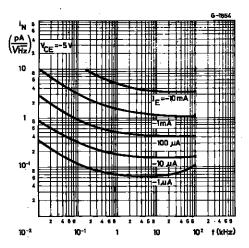

Collector-emitter Saturation Voltage.


DC Current Gain.

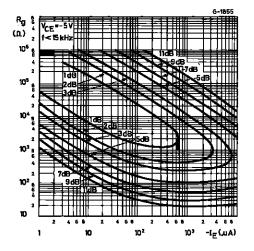

Collector-base Capacitance.


Base-emitter Saturation Voltage.

Transition Frequency.

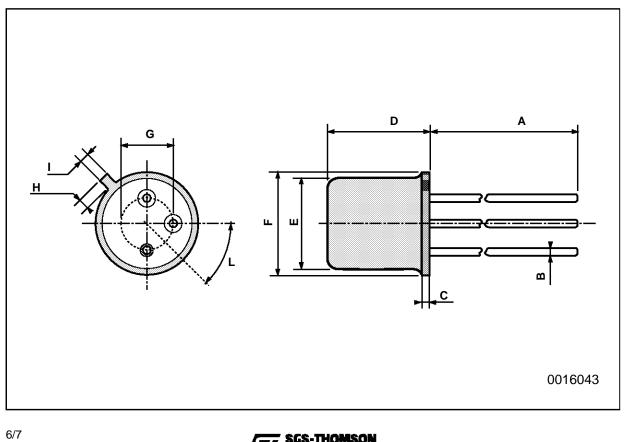


Equivalent Input Noise Voltage (for BCY71 only).



Equivalent Input Noise Current (for BCY71 only).

Countours of Constant White Noise Figure (for BCY71 only).



BCY70-BCY71-BCY72

TO-18 MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		12.7			0.500		
В			0.49			0.019	
D			5.3			0.208	
E			4.9			0.193	
F			5.8			0.228	
G	2.54			0.100			
н			1.2			0.047	
I			1.16			0.045	
L	45°			45 [°]			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

